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Abstract 
This paper describes the integration of a model-based planner into a procedural architecture. This 
architecture is unusual in  that the internal procedures and the planners inter-operate in an 
asynchronous fashion in a multi-threaded environment via a goal-based interface. The submission of 
goals may trigger either internal procedures or planners, and both internal procedures and planners 
may submit goals. The procedural architecture described is the Mission Data System (MDS) Goal 
Achieving Module (GAM) architecture. The planner described is the CASPER (Continuous Activity 
Scheduling Planning Execution and Replanning) system. This approach has been prototyped and 
tested against virtual spacecraft and comet-lander operations scenarios and simulations. 

Introduction 
The MDS (Mission Data System) is a multi-mission combined flight and ground software designed to 
enable significant autonomy in spacecraft operations. A definition of a spacecrafVscenario consists of 
modules that are responsible for maintaining the state of the spacecraft and achieving high level goals 
while reacting to unforeseen changes onboard and in  the environment. 

CASPER (Continuous Activity Scheduling Planning Execution and Replanning) is a soft real-time 
planning system that achieves high level goals while monitoring the state of the spacecraft and 
environment, as well. The definition of a spacecraftlscenario for CASPER consists of a declarative 
model consisting of activities, states, resources, and their relationships. 

The difference between these systems is that  the modules that make up a spacecraftlscenario definition 
in the MDS are procedural-that is to say, they are (somewhat) arbitrary pieces of code. The definition 
of a spacecrafthcenario for CASPER is (mostly) declarative. Both have advantages and disadvantages. 
Arbitrary code can be very specialized and fast, but is difficult to validate and difficult to produce. 
Validation tools exist for declarative models, and the development of these models is fairly 
straightforward, but generic algorithms for reasoning about all possible domains do not yet exist (and 
in our opinion are not likely to any time soon). We present a mapping from the requirements of MDS 
modules to the capabilities of CASPER that enables a mixed mode of procedural/declarative modeling 
while providing monitoring, prediction, and validation of state. 

Overview 
We first describe the goal-based interface. This is the  glue  that holds the  MDS together. Then we 
describe procedural units called GAMS. We follow with a description of CASPER and its associated 
activity-executiodstate-update interface. We describe a mapping to and from both interfaces. Finally, 
we present results demonstrating the feasibility of this approach. 

The  Goal-Based Interface 
A goal is a constraint on a state-variable over time. 

A state-variable is the representation of state used to reason about actual states of the spacecraft, e.g. 
propellant level, orientation, or memory usage. A state-variable may also represent an abstraction such 
as the number of high quality pictures stored  in memory. A constraint on a state-variable is an 
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expression of  what values the state-variable may  be  and still satisfy the goal, e.g. orientation must be 
pointing at Europa implies that, of all values for orientation possible, only those where the spacecraft 
(or the camera) is pointing at Europa  are  valid. 

Goals constrain state-variables over a specified time or interval. This interval is expressed as two 
ordered time-points-a start-time and an end-time. 

At any point in time throughout its life, a goal finds itself in one of many states referred to as itsstatus. 
The status consists of an outcome, stability, and  time. Outcome describes whether the goal is achieved 
or failed (or predicted to be achieved or failed.) Stability indicates whether or not the system is 
performing computations that might result in a change in  the outcome (e.g. during elaboration), and 
time indicates whether the goal is pending, currently active, or past. 

The interface upon which the architecture is  based is quite simple. State-variables receive goals and 
route these to a dedicated module that is responsible for status updates to every goal submitted to it. It 
is also responsible for submitting new goals to ensure that the current goals under its purview are 
achieved. These modules are Goal Achieving Modules or  GAMs (described more fully later.) Thus, 
each GAM must provide the facility for accepting submitted goals. In a sense, we can see each GAM 
as a node connected to the goal-cloud via state-variables, much as computers connected to a network. 
Each node is neither concerned with how the information is passed nor with how it was generated, 
only that it must be fulfilled. Any GAM  can submit goals to the cloud, and any GAM might receive 
goals from the cloud (see Figure 1). 

GAMs State  Variables 

goals 
goals 

goals" 

Figure 1. The Goal Interface as a Goal Network Cloud 

The Goal Achieving Module 
The basic function of the GAM is to maintain constraints on state-variables over time. These 
constraints are received through the goal-based interface as goals. Each state-variable in the system 
has one associated GAM. A single GAM  may  be responsible for many state variables but must be 
responsible for at least one (otherwise, it cannot receive goals.) 

Upon receipt of a goal, a GAM must decide if this new goal  can  be achieved. The GAM must decide 
on one or more of the following: 

0 the goal is already satisfied (enough power is available during that time) 
rescind other conflicting goals to accommodate the new goal 

0 perform actions that will accommodate the new goal 
sub-goal to other GAMs  in hopes of accommodating the new goal. 
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This decision process is known as elaboration. The result of elaboration is a guarantee that the goal 
will be achieved over the period specified assuming the predicted future state is within tolerance of the 
actual future state. 

For example, an ORIENTATION GAM (or simply ORIENTATION) may receive a request from the 
IMAGERY GAM (or simply IMAGERY) in the form of a pointing goal. (Note: since state variables act as 
routers for goals and do not actually change them  in  any  way,  we  will henceforth talk about goals 
being received directly by GAMS with the understanding that the goals are actually routed through the 
state-variable constrained by  the goal.) In general, a goal describes a time-window that the goal must 
be true: in our example, the orientation of  the spacecraft must be consistent with the pointing request. 
ORIENTATION might be capable of achieving this without further sub-goaling. But, ORIENTATION may 
decide on a course of action that includes sub-goaling, such as using reaction wheels to achieve the 
pointing goal. Reaction wheels require the  use  of power, so a power  goal would be issued to POWER, 
and so on, until all goals can  be achieved (see Figure 2). Of course, it may be the case that a goal is 
unachievable. If so, the goal is reported as such by  the receiving GAM, and the issuing GAM must 
decide on what operations make sense to achieve its outstanding goals in light of this unachievable 
sub-goal. 

I 
Ensure that you have  a 

picture of  Europa by 1 1:OO A.M 

/ 
/ 

Point a;Europa - from 10:OOA.M. to 10:30A.M. \ 

Power  Request  Goal / 
from 10:OOA.M. to 10:30A.M./ 

I 

Figure 2. Elaboration Example 

Elaboration is only one facet of achieving goals; spacecraft operations demand execution and 
monitoring, as well. Through a system checking preconditions of the goal, the lower level controllers 
are notified as to the state they must maintain at  any  given time based  on the time-points. Therefore, 
execution is simply the commanding of modes to lower level controllers. 

Monitoring is the process of updating state estimates based  on measurements. Measurements result 
from a process of combining appropriate information and reporting these to a measurement model. It 
is up to the measurement model to update the state appropriately. 

The overall relationship between the modules described is represented in Figure 3. 
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Low level  controllers  and  hardware 

Figure 3. MDS Modules and Interfaces 

Note that the interfaces are simple: State Variables receive updates and provide estimated values; 
GAMS receive goals and estimated values and provide goals and commands; Measurement models 
receive measurements and estimated values and provide state updates. 

CASPER 
Spacecraft operations demand a high level of responsiveness in dynamic environments. To provide the 
required level of responsiveness while including a declarative modeling environment, we utilize a 
continuous planning approach and  have implemented a system called CASPER. 

Traditionally, declarative planners provide execution capabilities based  on a batch formulation of the 
problem. In the batch approach, time is divided up into a number of planning horizons, each of which 
lasts for a significant period of time (see Figure 4). When one nears the end of the current horizon, one 
projects what the state will be at the end of the execution of the current plan. The planner is invoked 
with a new set of goals and this state as  the initial state (for example the Remote Agent Experiment 
operated in this fashion [Pell et al, 19971). 

Plan for 
next  horizon 

Plan for 
next horizon 

Figure 4. Traditional Batch "Plan the Execute" Cycle. 

This approach has a number of  drawbacks.  In this batch oriented mode, typically planning is 
considered an off-line process which requires considerable computational effort and there is a 
significant delay from the time the planner is invoked to the time that the planner produces a new 
plan.' If a negative event occurs (e.g., a plan failure), the response time until a new plan may be 
significant. During this period the system being controlled must  be operated appropriately without 
planner guidance. If a positive event occurs (e.g., activities finishing early), again the response time 
may be significant. If the opportunity is short lived, the system must be able to take advantage of such 
opportunities without a new plan (because of  the delay in generating a new plan). Finally, because the 
planning process may need to be initiated significantly before the end of the current planning horizon, 

1 As  a data point,  the planner for  the Remote Agent Experiment (RAX) flying on-board the  New  Millennium  Deep  Space 
One mission  (Muscettola  et  al  1997) takes approximately 4 hours to produce a 3 day  operations plan. RAX is running on a 
25 MHz RAD GOO0 flight processor and uses roughly 25% of the CPU processing power. While this is a  significant 
improvement  over waiting for ground intervention, making the planning process even more responsive (e.g., on a  time  scale 
of  seconds or tens  of  seconds) to changes in the operations context, would increase the overall time  for  which  the spacecraft 
has a  consistent plan. 
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it may be difficult to project what the state will be when  the current plan execution is complete. If the 
projection is wrong the plan may have difficulty. 

Rather than considering planning a batch process in  which a planner is presented with goals and an 
initial state, the planner has a current goal set, a plan, a current state, and a model of the expected 
future state. At any time an incremental update to the  goals, current state, or planning horizon (at much 
smaller time increments than batch planning? may update the current state of  the plan and thereby 
invoke the planner process. This update may be  an  unexpected event, the receipt of a new goal, or 
simply time progressing forward. The planner is then responsible for maintaining a consistent, 
satisficing plan with the  most current information (seeFigure 5 ) .  This current plan and projection is 
the planner's estimation as to what  it expects to happen in  the  world if things go as expected. 
However, since things rarely go exactly as expected, the planner stands ready to continually modify 
the plan. 

Figure 5. Plan Repair in  Response to Updates 

As illustrated in Figure 5, CASPER receives state updates. CASPER also executes commands based 
on activities currently planned and scheduled. Figure 6 shows  the interfaces in CASPER. 

1 
Activity Requests 

\ I 
State Values 

State Updates 
Measurements Commands 

Low  level  controllers and hardware 

Figure 6. CASPER Module Interfaces 

State Determination performs a function similar to measurement models in MDS in that it takes as 
input the current estimated state(s) and outputs state updates. CASPER itself receives as input activity 
requests, user commands and state updates, and it outputs commands and state values. 

A Mapping from Goal-based Interface to the Activity-Execution/State-Update Interface 
To map CASPER into the MDS, we  must first define which modules CASPER replaces and define a 
mapping from the interfaces for these modules to the interfaces provided by CASPER. Conceptually, 
CASPER acts as a stand in  for Stave Variables and GAMS. A key notion of this integration is that the 
machinery or planning (whether performed by  an  AI planner or  by code within a GAM/State Variable) 
is hidden from an external goal-submitting agent. The interface presented is identical. The dashed box 

' For the spacecraft control domain we envision an update rate on the order of 10 seconds real time. 
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in Figure 7 delineates the modules to be  swapped out. This box indicates the meta-module that 
CASPER functions as. 

Measurement Estimates of 
State Value Goals 

Values 

Variable State Value Commands I 
” 

Low level controllers and hardware 

Figure 7. State Variable and GAM modules to  be replaced by  the Meta Module 

This leads to the following simplified meta-module (see Figure 8.) 

4-Estimates of 
State Value 

\ f 
State 

Updates 

Goals 

Commands 

4 
Figure 8. The Meta Module standing in  for a GAM  and its associated State Variable 

As illustrated in Figure 6, CASPER already provides an interface for state updates, estimates of state 
value, and commands, but lacks a clear interface with respect to goals, both in terms of receiving goals 
and in terms of creating new goals. CASPER  can accept new activities, so we need to provide a 
mapping between activities and goals. 

An activity is similar to a goal  in that it is partially defined by an interval that consists of a start- and 
end-time. But, an activity need not  represent a constraint on a state at all. In fact, many activities 
simply represent an abstraction that is later “fleshed-out’’  in more detail according to decomposition 
rules in the model. So, the definition of an activity is less constrained in theory than that of a goal. But, 
an activity may have constraints on shared states and resources. These are roughly synonymous with 
state variables. These constraints usually span  the temporal extent of the activity, and therefore are a 
very close match to a goal. Thus, we  can define special activities that represent the same semantics as 
goals. This provides us the interface to receive goals (by converting them to appropriate activities.) 

However, we still require an interface that allows CASPER to submit goals that constrain external 
state variables. Again, we can create an activity, and upon creation of these activities we can convert 
them to goals and submit them. But, how do  we keep track of the status of the activity? What if the 
receiving GAM modifies the goal by constraining the times when it can  be executed? We still require 
a communication path that informs CASPER  of  when a sub-goal is achievable. 

When CASPER requires an activity, it adds it to the plan and schedules it. Normally, CASPER knows 
all about the activity, so it  can reason about  it without external assistance. Depending on the 
permissions of the activity, CASPER may  then attempt to move it  or delete it or perhaps change the 
value of one of its parameters. The model dictates control of  each  of these operations with permissions 
e.g. if an activity does not have “move” permission, then CASPER cannot move it. 
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One of the myriad operations CASPER performs is scheduling an activity. Scheduling an activity is 
the act of constraining states and resources according to  the model of the activity. If CASPER does not 
have “schedule” permissions for an activity, it  can never satisfy the constraints of the activity because 
it will never be allowed to do so. But, if some external agent (a user, perhaps) overrides the 
permissions and schedules the activity, then  CASPER  can continue. This is the mechanism through 
which we allow the submission goals to external agents. First, we detect and report activities that do 
not have “schedule” permission to an activity-to-goal translator. This translator then creates a goal and 
submits it to the goal-cloud while monitoring the goal’s status. When the status reports back that it will 
be achieved, the unscheduled activity is scheduled by overriding the permissions via the user 
command channel, thereby closing the loop. 

Also, CASPER must keep a skeleton model of all state variables that it wishes to constrain via sub- 
goals submitted to GAMS. Note that this is synonymous with bestowing to GAMS the knowledge of 
how to express goals. 

Our final architecture with the new modules that performs the same functions as themeta module of 
Figure 8 is shown in Figure 9. Note  that  the  unscheduled activity reporter is imbedded directly in 
CASPER due to the special knowledge requirements demanded  by its function. 

I 
State 

Updates 

+- State Value 
Estimates of- Goals -b 

Commands 

4 
Figure 9. CASPER and supporting modules as the Meta Module 

Prototypical Results 
We  have demonstrated this approach in two domains. The first is the VSS (Virtual Spacecraft 
Scenario)-a synthetic domain designed to represent a simple spacecraft. The second is the ST4 
(Space Technologies 4/Champollion) scenario-a comet-lander drilling, testing samples, observing 
surface features and effects, and reporting results to an orbiting spacecraft. Our approach worked well 
in both scenarios in that the CASPER  meta module performed at least as well as the procedural 
modules. 

The Virtual Spacecraft Scenario 

The purpose behind a simple scenario is to test ideas without the overhead of high fidelity simulators. 
Toward this end, the VSS was developed. It consists of a spacecraft with one axis of control (much 
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like a phonograph turntable, for those who remember such things), a camera, solar panels mounted on 
a gimbal with limited motion, a power bus, and batteries. 

An example of a high level goal that would be sent  would be “ensure that a picture of object X is 
available at 5:OO P.M.” This is a constraint on  the SCIENCE state variable. A simplified example of 
elaboration of this goal  would  proceed as shown  in Figure 10 (nodes are state variable/GAMs and arcs 
are goals). The numbering indicates a possible ordering of decisions by the system even though 
elaboration is a potentially parallel process. 

1 .  ensure a picture 2. taken 
of X is available  picture of X 

3.  point at X 9. take p~cture 

4. reserve 

Figure 10. Elaboration of goal in VSS 

For simplicity we do not indicate times for the  goals, but a temporal ordering is imposed by the system 
to ensure proper execution. 

Consider the operation performed by ORIENTATION in response to the “point at X ’  goal. When 
constructing a GAM, information about turning and propellant usage is encoded in implementation 
code. As the GAM is implemented using standard  coding techniques, it is difficult to generate, verify, 
and maintain. CASPER allows the same behavior while employing a declarative representation, 
thereby cutting development time while enabling proven verification techniques to be applied to the 
model. Maintenance time is also cut in  that  the encoding for the domain is more readable and changes 
are easier to implement. 

Each time a pointing goal appeared in  the  goal cloud, the goal-to-activity translator would create an 
appropriate pointing-activity. The elaboration of this activity is encoded  in its definition (as above.) It 
is possible that we would oversubscribe a resource, e.g. using “10” of propellant may oversubscribe 
our existing store. In this case, CASPER  uses  its generic algorithms to plan around the 
oversubscription, and solve it through any number of means. 

We first modeled this scenario entirely using GAMs and state variables. Once this operated properly, 
we implemented pieces in CASPER, until we  had example of system performance with varying levels 
of GAMs versus CASPER elaboration and state representation. As was expected, we found that 
procedural GAMs took longer to encode than their declarative counter parts. We also found that 
performance was comparable between  the two, both in terms of computation time and in terms of 
solution quality. 

Space Technology 4/Champollion Cornet Lander 

This scenario entails the landed operations of a comet lander. The lander must drill core samples, test 
them in an oven, and report information via a communications link. Also, it must take photos of 
features on the surface and react to interesting events such as the out-gassing of material. 
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A major difference in terms of our tests between ST4 and VSS is that we  have a high fidelity simulator 
for ST4. Even though we  had  the demands of a more challenging scenario, we found that most state 
variables could be represented within CASPER, and similarly, we  found that the development time for 
models expressed in a declarative manner was shorter than those expressed procedurally. 

Conclusions 
We  have described the integration of CASPER, a model-based planner, into the MDS GAM 
framework, a procedural architecture. This integration was facilitated by the fact that the internal 
procedures and the planners inter-operate via a goal-based interface. We demonstrated our approach 
by prototyping and testing against VSS and ST4. We  have observed that declarative modeling reduces 
development time while still providing solutions to rich domains. 
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